
Recommender Systems for the Semantic Web
Antonis Loizou 1 and Srinandan Dasmahapatra2

Abstract.
This paper presents a semantics-based approach to Recommender

Systems (RS), to exploit available contextual information about both
the items to be recommended and the recommendation process, in
an attempt to overcome some of the shortcomings of traditional RS
implementations. An ontology is used as a backbone to the system,
while multiple web services are orchestrated to compose a suitable
recommendation model, matching the current recommendation con-
text at run-time. To achieve such dynamic behaviour the proposed
system tackles the recommendation problem by applying existing RS
techniques on three different levels: the selection of appropriate sets
of features, recommendation model and recommendable items.

1 INTRODUCTION AND PROBLEM

While much work has been done in the Recommender System (RS)
domain over the past decade [18] and though such systems have been
deployed commercially, eg. [10], recent research in the area seems to
have reached a standstill. Intuitively, one may suggest this is due to
the fact that the recommendation problem has been solved, deeming
further research into the area unnecessary. However, upon deeper in-
spection and by empirically evaluating such commercially deployed
systems, it becomes evident that this is not the case [19].

In the majority of current RS implementations, items are recom-
mended to users through some flavour of Collaborative Filtering (CF)
[4, 16, 23], a method that assesses the similarity between user pro-
files to predict ratings for unseen items. Alternatively, in Content
Based (CB) approaches, the items of possible interest are indexed
in terms of a set of automatically derived descriptive features, and
unseen items with similar attributes to those rated highly by the user
are recommended. The two approaches are often combined in Hy-
brid RS to achieve improvements in the quality of recommendations
[1, 3].

The shortcoming of such a method rests in its assumption that ac-
tive users will respond positively to unseen items rated highly by
similar users. As most users are not inclined to rate previously seen
items, only a few items will receive ratings. This limited data – the
‘cold start’ problem [21] – renders similarity metrics not sensitive
enough to distinguish between users, particularly new ones intro-
duced to the system. Hence, the most highly rated items from anyone
are recommended. Alternatively, in Content Based (CB) approaches,
the items of possible interest are indexed in terms of a set of auto-
matically derived descriptive features, and unseen items with sim-
ilar attributes to those rated highly by the user are recommended.
A drawback of the CB method is that it recommends items inter-

1 IAM, School of Electronics and Computer Science, University of
Southampton, SO17 1BJ, UK, email: al05r@ecs.soton.ac.uk

2 SENSE, School of Electronics and Computer Science, University of
Southampton, SO17 1BJ, UK, email: sd@ecs.soton.ac.uk

changeable to the ones rated highly by users, ignoring potential user
requirements. The two approaches are often combined in Hybrid RS
to achieve improvements in the quality of recommendations [1, 3].

These shortcomings reflect the lack of computational support for
humans who are interested in items they, or the people who usually
share their taste haven’t previously come across. In addition, such
systems do not allow for shifts of the user’s interest over time, since
all ratings provided by a user have an equal bearing on the recom-
mendation selection. To clarify this point consider the following con-
ceptualisation: A userX has provided high ratings only for items in
some setA, however (s)he is now only interested in items from an-
other set,B. A conventional RS will not be able to recommend items
from setB until enough ratings are provided for items inB, in order
for them to dominate in the clustering and selection processes. This
means that a system shouldn’t become stable, and that the classifi-
cation of the same items to different classes, at different times, may
be deemed correct, something that would be unacceptable in most
machine learning contexts. To account for this requirement of time
dependance on users’ preference context, conventional architectures
recompute their user clusters periodically, effectively choosing a dif-
ferent training set every time. This can aggravate problems caused
by data sparsity, and important modelling decisions about transitions
between user needs have to be addressed.

Furthermore, while it is apparent that an artifact’s features have
a bearing on whether it appears interesting or not, users may not be
able to identify its desirable characteristics at the outset. For instance,
someone who wants to buy a new car might only specify ”I want a
black car” to begin with. Instead of buying the first black car avail-
able, s/he might look at a variety of black cars and as their knowl-
edge of cars grows in the process, discover other possible features of
interest, or even come across an unusual opportunity and end up buy-
ing a different coloured car. This would suggest that for a RS to be
successful, it needs to be able to identify which of an item’s features
may potentially be of interest to the user, against a variety of possible
modes of generalisation.

To overcome such issues, a system should be able to consider
the semantics of both the recommendation context and those of the
items at hand to constrain the recommendation process. Informa-
tion specific to the recommendation context for both user clustering
and content-based comparisons have been shown to improve overall
recommendation performance [3, 17, 21]. By incorporating relevant
contextual information into a recommendation model, we enable the
system to evaluate the appropriateness of a given recommendation
based on some heuristics, for example the time of recommendation or
the utility of the recommended item to the user [1, 6, 9]. The system
proposed in this paper is one designed to choose appropriate input
and output spaces dynamically, in a manner that will allow for real
time recommending, matching the variable temporal and contextual
recommendation requirements while still performing the bulk of the

computation off-line. The system architecture has been designed to
allow this flexibility, which we describe next. We have experimented
with various evaluation models to identify the sources of potential
improvement in this dynamic architecture.

2 PROPOSED SYSTEM ARCHITECTURE

Assuming that the human selection process is best modelled through
a dynamic function that operates on some subset of an artifact’s at-
tributes and other contextual variables, the proposed architecture em-
ploys a variety of Web Services (WS), each capable of performing
a subroutine of the recommendation process. The recommendation
process in this architecture is split into three distinct phases:

Knowledge acquisition: Knowledge acquisition is continuously
carried out in the background by specialised WS, in order to im-
port new recommendable items into the system. This consists of
discovering new items from trusted sources, and acquiring (par-
tial) translations of their descriptions to the system ontology, in
a manner that allows feature vectors to be extracted from such
descriptions in order to apply any available distance measures be-
tween newly acquired items and existing ones.

Recommendation subspace selection: The recommendation
space is conceptualised as a multidimensional space where each
unique feature in all items known is represented by a dimen-
sion. Our aim is to identify which ’slices’ of this space contain
items that can be recommended under the current recommenda-
tion context. To carry this out each unique feature will be assigned
a weight based on how strong the relationship between items with
the same feature value is, that can be determined through Ontol-
ogy Network Analysis (ONA) [2, 14]. The recommendation con-
text will be determined through the users’ recent behaviour as
logged by the system, inferred restrictions from a long-term obser-
vation of the users’ preferences, additional restrictions provided
explicitly by the user and global trends. As the user provides rat-
ings for the recommended items the weights these factors receive
will be adjusted to produce recommendations more likely to re-
ceive high ratings. Having split the dataset into clusters of similar
items and users, the set of recommendable items is determined
based on the current context. A suitable user cluster is then iden-
tified by selecting users with experience of the recommendable
items but also with sufficent overlaps between their profiles and
that of the active user in order to meaningfully assess similiraty.
These users are viewed as the group of domain experts who are
able to communicate best (in terms of their personal ontologies)
with the active user. Furthermore, this problem is similar to that
of making a recommendation and can be tackled by obtaining a
ranked list of all possible combinations of item and user clusters,
based on the current contextual setting.

System configuration composition:Having selected an appropri-
ate recommendation subspace, we can now choose components
that have performed well in the past with the domain experts as
well as with the active user and similar recommendation contexts,
to compose an appropriate system configuration. The unseen items
of the highest relevance to the current context in the selected sub-
space, that have received high aggregate ratings by the domain
experts are recommended to the active user.

Even on a conceptual level, the immense computational require-
ments of such a venture quickly become apparent. Pairwise com-
parisons need to be evaluated between all items, users and available

components, thus prohibiting a centralised design. Therefore we in-
tend to deploy the proposed system in a large scale peer-to-peer net-
work, allowing the computation to take place in a distributed fashion
through the exchange and reuse of data processed by different peers.

2.1 ONTOLOGY DESIGN

In order to encode and process contextual information, ontologies are
used to record and reason over similarity between artifacts and iden-
tify indirect relationships between entities. Referrals to classes in the
system ontology will appear in inverted commas for the remainder
of this paper, for ease of reference. It is assumed that user prefer-
ences are correlated across different domains. Therefore by making a
system aware of the different ’Types’ of ’Items’ available for recom-
mendation allows these correlations to be discovered by indicating
which features are comparable, or equivalent under a set of criteria
and can be used to compute predicted ratings for unseen items.

Anything that can be recommended by the system is represented as
a member of the concept ’Item’ with an association to a valid ’Type’
and is described through a number of ’Features’. The ’Features’ asso-
ciated with each ’Item’ are restricted to a subset of all the ’Features’
of the ’Type’ the item belongs to. This scheme will allow the system
to derive inferences on how different ’Type’s’ features are correlated
with respect to each user, based on the profiling information available
for that user.

Instances of the concept ’User’ represent users in this ontology
and each one is assigned an ’ID’ and a ’Profile’. General information
about the user is recorded through relationships like has-name, has-
address, is-employed-by, etc. and is also associated with a number of
’History’ instances:

QueryHistory: The user will be allowed to form explicit queries,
imposing added restrictions on the ’Item’s that can be recom-
mended and to provide a finer grained recommendation context.
These queries are recorded in instances of ’QueryHistory’ and are
used later, together with the corresponding ’RecommendationHis-
tory’ and ’RatingHistory’ objects, in order to determine how apt
’Recommender’ web services are for handling specific types of
query.

RecommendationHistory: Any items recommended by the sys-
tem to a user are recorded in their ’RecommendationHistory’ to-
gether with a log of which web services were used to produce
a recommendation. The future selection of web services will be
based on the ratings assigned by the user to the recommendations.

RatingHistory: Instances of this class contain records of all the
’Rating’s provided by a user and are used by ’ClusterDetector’,
’Aggregator’ and ’Classifier’ web services as described below.

By implementing the various components used in the recommen-
dation process as web services, an arbitrary number of runtime con-
figurations can be achieved by using alternative instances from each
class. Furthermore, by defining the concept ’WebService’ as a sub-
class of the concept ’Item’ allows for an added level of abstraction
in the recommendation process, transparent to the user, where spe-
cific instances of ’WebService’ are recommended in order to com-
pose a system configuration. The various subclasses of ’WebService’
are briefly described below.

ClusterDetector: Instances from this class, are able to detect clus-
ters of users or items through the use of clustering algorithms and
methods. The clustering for users is achieved by exploiting the
information available in the ’History’ and ’Profile’ instances asso-
ciated with them, while items are clustered together based on the

2

’Feature’ instances collected by the system to describe them. Each
time clusters need to be computed a ’ClusterDetector’ instance is
chosen based on its past performance in similar contexts.

Aggregator: An ’Aggregator’ web service is responsible for com-
puting the aggregate ratings of a user cluster, for some specified
items. As in ’ClusterDetector’ the choice of ’Aggregator’ depends
on its past performance and also on the current recommendation
context.

Classifier: Classifier’ web services are used to assign predicted
ratings to unseen items, by training various machine learning al-
gorithms on the user’s ’RatingHistory’. Again, past performance
in similar contexts determines the bias in choosing an instance.

Recommender: Web services of type ’Recommender’ are respon-
sible for evaluating the context of a recommendation need and for
selecting the web services that will be used to produce that recom-
mendation. ’Recommender’s also receive predicted ratings com-
puted by ’Classifier’s and rank them according to the recommen-
dation context. Different ’Recommender’s may use different com-
ponent selection and ranking strategies to improve performance in
specific contexts.

Aligner: ’Aligner’ web services are capable of computing partial
alignments between two ontologies, in order to import knowledge
from heterogeneous sources.

Gatherer: Instances of the ’Gatherer’ web service are able to dis-
cover entities described in external ontologies and import them
into the system, using an ’Aligner’ to compute a translation of the
gathered instances to the internal ontology.

3 CASE STUDY: MUSIC PREFERENCE
PREDICTION

The key evaluation of our approach lies not in recommendation per-
formance per se (although that is a goal), but rather in assessing how
different representations of the same dataset affect the performance
of recommendation schemes and how these may be applied to the
same dataset at different times, predicated on the current system state
and requirements. To quantify this, the magnitude of any improve-
ment over conventional RS approaches where a single recommenda-
tion strategy is always used has to be evaluated. Therefore, we require
a second fully-fledged RS (and not a ‘random recommmender’ as is
usually assumed), already primed for the same dataset and known to
produce high quality recommendations to meaningfully benchmark
the proposed approach. Furthermore, the problem domain selected
would ideally have clear links to other subjects, since we aim to be
able to also recommend items from multiple domains, even those
with no previous user ratings.

Given these requirements, a suitable domain had to be chosen with
a sparse dataset, identified as the major source of shortcomings of
RS, and have the characteristics identified above. We selected the
data made available by the Audioscrobbler system [11], a music en-
gine based on a massive collection of music profiles. These profiles
are built through the widespread use of the company’s flagship prod-
uct, Last.fm [12], a system that provides personalised radio stations
for its users and updates their profiles using they music they listen
to, in order to improve the station’s content, and also makes person-
alised artist recommendations. In addition Audioscrobbler exposes
large portions of data through their web services API. Moreover, this
dataset is extremely sparse (we only obtained values for 0.22% of
all possible (User,Artist) pairs) since the number of available artists
greatly exceeds the number of users and more than one track is typ-
ically available for each artist. Finally, the music domain is consid-

ered fertile ground for making cross-domain recommendation since
some songs will be influenced by other art forms, associated with lo-
cal traditions or socio political events, or even convey the ideological
convictions of the creator.

The first task is to assess in a qualitative fashion the clusterings
of the dataset that can be obtained without taking into account any
collaborative information or content descriptors, but rather by con-
sidering the contextual metadata available from trusted on-line re-
sources about the data points (in this case artists). Wikipedia [8] was
identified as one such source, due to its wide coverage of subjects,
maintained by their respective interest groups, which may be deemed
expert knowledge and used as a source of contextual information for
multiple domains [5]. For each resource all the hyper-links to and
from the resource’s Wikipedia page are recorded as items related to
it. This relationship is then weighted by the relative importance of
the discovered resources, a quantity thought to be proportional to the
number of other pages linking to it. The rich, highly interconnected
structure of wikis is considered ideal for this purpose.

Data was collected for 5 964 UK users of Last.fm and 17 882
artists, by implementing instances of Gatherer and Aligner WS, to
interact with the Audioscrobbler WS and assign the instances ac-
quired to the internal system ontology. Similarly, in total 158 273
resources from Wikipedia were discovered to be related to this set of
artists. This was stored in a flat RDF file through Jena [13]. How-
ever the data has to be extracted from the RDF model and loaded
into matrices each time a clustering algorithm is applied, as off the
shelf algorithms typically use matrices as inputs, but mainly because
of the much lower cost of accessing a cell in matrix than submitting
a query to an RDF model.

As such the data was summarised in two matrices: a[Users ×
Artists] matrix where each row represents a user, each column an
artist and each cell contains the number of times a user listened to
a track by an artist, and a[Artists × Context], with each row
corresponding to an artist and columns representing each one of the
158 273 resources gathered from Wikipedia, with boolean entries
indicating whether an artist is related to the context described by a
particular resource. Note that the dimensionality of these matrices
strictly limits the use of computationally intensive machine learning
algorithms on the raw data.

3.1 PROCESSING AND RESULTS

3.1.1 SINGULAR VALUE DECOMPOSITION (SVD) AND
k NEAREST NEIGHBOURS (kNN)

To circumvent the computational limitations posed by the dimen-
sionality of the dataset, the original input spcae was projected in
200 latent dimensions, by computing through SVD [20] the best
rank 200 approximation of the highly sparse (99.9832% zeros)
[Artist × Context] matrix.

In order to assess whether the features harvested from Wikipedia
contain enough information to describe similarity between artists as
it is perceived by listeners, the cosine distance between each pair of
artists in the vector space spanned in the 200 latent dimensions the
dataset was reduced to, was evaluated and lists of 100, 50, 35, 20, 10
and 5 Nearest Neighbours were recorded. These lists were then com-
pared to real user play count statistics, made available through the
Audioscrobbler WS API, in the form the 100 artists with the highest
number of appearances in the same playlist. If the artist has only ap-
peared in the same playlist with less than 100 artists, only those are
recorded. We used the following statistics to evaluate the quality of
the clustering achieved:

3

Artists 17882
Artists with no Last.fm cluster 1120
Artists not found in Last.fm 528
Artists with no links to Wikipedia pages 13309

Working set 4495

k 100 50

Mean precision 0.0655 0.0890
Mean recall 0.1025 0.0710
Mean hits 6.5497 4.4523

Mean Kendall’sτ 0.0868 0.0665
Corresponding Z-score 1.9643* 1.0760

Critical Z value at the 10% level (two-sided) or 5% level(right-sided):1.64

Artists with> 0 hits 3180 2937
% of working set 70.75 65.34

Mean precision 0.0926 0.1363
Mean recall 0.1449 0.1087

Mean Kendall’sτ 0.1226 0.1017
Corresponding Z-score 2.7765* 1.6468*

Random recommender
Expected mean precision 0.000056
Expected mean recall 0.000056 0.000028
Expected mean Kendall’sτ 0

Table 1. Precision/Recall and Kendall’s correlation coefficient analysis of
the results achieved by applying 100-NN and 50-NN on feature vectors

reduced via SVD.

Precision and recall: While precision and recall are typically used
to assess the quality of query results using labelled test data, their
use in this context is not as well defined. Precision is defined as
the number of hits retrieved by a search divided by the number of
search results (1), while recall is the number of hits retrieved by
the search divided by the number of all hits (2). This gives:

Precision =
|kNN ∩ Last.fm|

k
(1)

Recall =
|kNN ∩ Last.fm|

100
(2)

where |k − NN ∩ Last.fm| is the number of artists that ap-
pear in both lists. Since the number of all hits is unknown, we are
forced to assume that the list provided by Last.fm is exhaustive,
which is untrue. In addition, our choice of clustering algorithm de-
fines explicitly the number of results that will be retrieved for any
artist. However, training an unsupervised algorithm with a num-
ber of classes of the same order of magnitude as the number of
artists in the working set is simply impractical. We observe that the
obtained values are not large enough to suggest that the features
collected are sufficient to reproduce the clusterings as those that
emerge through recording real users’ listening behaviours. How-
ever the order of improvement over the ’random recommender’,
and the fact that reducing the number of neighbours causes recall
to reduce, while increasing precision and vice versa, as expected,
provide motivation for further evaluating the utility of the contex-
tual features gathered. In addition, it can be shown that both preci-
sion and recall monotonically increase as functions of the number
of features available for each artist.

Kendall’s τ : Kendall’s correlation coefficient,τ , is a widely used
statistic to compare two different rankings of the same variables
and thus it was used to measure whether the ’hits’ produced by
k-NN are ranked in a similar manner as in Last.fm’s lists of artists
commonly played together. Theτ value is obtained by dividing

the difference between the number of concordant (nc) and discor-
dant (nd) pairs in the ranked lists, by the total number of pairs.
A concordant pair is defined as a two variables that appear in the
same order in both rankings, while otherwise the pair is consid-
ered discordant. More formally:

τ =
nc − nd

1
2
n(n− 1)

(3)

The results showed statistically significant evidence at the 5%
level (right-sided) of correlation between the lists of 100-NN and
those provided by Last.fm, and also for 50-NN when artists with 0
hits were excluded from the analysis, reinforcing our beliefs about
the quality of the collected features. The full results are again pre-
sented in Table 1.

3.1.2 NAIVE BAYES CLASSIFIER

Having performed the analysis described in the previous subsection,
the need for more meaningful metrics to qualitatively assess the har-
vested features arises. As such, a probabilistic evaluation scheme was
decided to be carried out. Last.fm also makes available lists of the 50
most played artists by each user. These lists were randomly sampled
to obtain train and test sets of various sizes. For each artist in the
dataset we evaluate:

P (artisti|top50j) =
P (top50j |artisti)P (artisti)

P (top50j)
(4)

, where:

P (top50j |artisti) =
Nj

Ni
(5)

P (artisti) ∝
∏

k

(P (fk)fi
k , P (fk) =

∑
i

f i
k∑

i

∑
k

f i
k

(6)

P (top50j) ∝
∏

artisti∈top50j

P (artisti) (7)

Artists are treated as ’bags of features’ andNi denotes the number
of users withartisti in their top 50 list,Nj the number of users with
exactly the same artists in their list astop50j andf i

k is the value
of the kth feature ofartisti. The analysis shows that on average
P (artisti|top50j) is consistently higher for artists in the test set,
as shown in Figure 1. In particular, randomly sampling the top 50
lists 15 times to obtain test sets and recommending the 15 artists
with the largestP (artisti|top50j) givesPrecision = 0.4841 and
Recall = 0.7333 averaged over all users.

4 DISCUSSION AND FUTURE WORK

The analysis carried out to this point has shown that contextual rela-
tionships between artists and arbitrary resources can be successfully
used to build feature vectors and to produce clusterings reflective
of real users’ listening preferences. It is intended that the collabo-
rative filtering information, available from Last.fm will be imported
into the system in order to assess the circumstances under which se-
lection and combination of appropriate sub-spaces of the full high-
dimensional recommendation space is beneficial, with respect to the
predictive ability of the system. Mappings from these to possible rec-
ommendation contexts will then be drawn, to gain insight into both
how recommendation contexts can be formed and articulated, as well

4

Figure 1. P (artisti|top50j) for test and random sets, sorted in order of
magnitude.

as how these can then be translated to restrictions on the sub-space
selection process.

In addition to the fact that meaning can be more naturally be at-
tributed to probabilistic classifications of any dataset, we found the
naive Bayes classifier to greatly outperform k-NN in terms of pre-
cision and recall. This provides motivation for further investigating
probabilistic dimensionality reduction and clustering techniques, and
in particular Probabilistic Latent Semantic Analysis, [7]. PLSA is
of particular interest, since its computational requirements can be
drastically reduced, using multi-resolution kd-trees (mrkd-trees) as
shown in [15], without compromising the optimality of the resluting
classifications [22]. By using mrkd-trees to summarise and compart-
mentalise the dataset we expect to gain insight into how the com-
putiations required can be carried out in a large scale distributed p2p
system, where each pear is responsible for performing the computa-
tions in an encolosing hyperectangle.

Furthermore, we aim to assess which of the resources (as de-
scribed by their Wikipedia pages) that have been extracted as con-
textual features for artists, can be regarded as recommendable items
in their own right. This will be achieved by assessing the relative
importance of these resources in Wikipedia and also by evaluating
the probability they can be meaningfully matched to users, based
on how big the overlap of the respective feature spaces is. The re-
trieval of conceptual descriptors of the newly found instances will
also be attempted, through the use of ontology alignment techniques.
It is intended that the resources discovered in this manner will be
matched with concepts from arbitrary ontologies, thus indicating
possible links and partial translations from one ontology to the other
making possible the recommendation of items described in these on-
tologies that the system was previously unaware of. An RDF Knowl-
edge Base described by the system ontology will then be populated
and reasoning will be carried out in order to assess which features
can be associated with or classify a ’Type’ and to identify overlaps
between different ’Types’s’ features in order to evaluate similarity.

REFERENCES
[1] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin, ‘In-

corporating contextual information in recommender systems using a
multidimensional approach’,j-TOIS, 23(1), 103–145, (January 2005).

[2] H Alani, S. Dasmahapatra, K. O’Hara, and N. R. Shadbolt, ‘Identify-
ing communities of practice through ontology network analysis.’,IEEE
Intelligent Systems, 18(2), 18–25, (2003).

[3] A. Berenzweig, B. Logan, D. Ellis, and B. Whitman, ‘A large-scale
evaluation of acoustic and subjective music similarity measures’, in4th
International Symposium on Music Information Retrieval, (2003).

[4] D. Billsus and M. J. Pazzani, ‘Learning collaborative information fil-
ters’, in 15th International Conference on Machine Learning, pp. 46–
54. Morgan Kaufmann, San Francisco, CA, (1998).

[5] J. Giles, ‘Internet encyclopaedias go head to head’,Nature, 438(7070),
900–901, (December 2005).

[6] T. Heath, E. Motta, and M. Dzbor, ‘Use of contextual information to
support online tasks’, in1st AKT Doctoral Symposium, pp. 107–113.

[7] T. Hofmann, ‘Probabilistic latent semantic indexing’, in22nd Annual
ACM Conference on Research and Development in Information Re-
trieval, pp. 50–57, Berkeley, California, (1999).

[8] The Wikimedia Foundation Inc., ‘Wikipedia: The free encyclopedia’,
http://wikipedia.org, (2006).

[9] S Lawrence, ‘Context in web search’,IEEE Data Engineering Bulletin,
23(3), 25–32, (2000).

[10] G. Linden, B. Smith, and J. York, ‘Amazon.com recommendations:
Item-to-item collaborative filtering.’,IEEE Internet Computing, 7(1),
76–80, (2003).

[11] Audioscrobbler Ltd., ‘Audioscrobbler’,http://www.audioscrobbler.net,
(2006).

[12] Last.fm Ltd., ‘Last.fm’,http://www.last.fm, (2006).
[13] B. McBride, ‘Jena: Implementing the rdf model and syntax specifica-

tion.’, in SemWeb, (2001).
[14] S. E. Middleton, D. C. De Roure, and N. R. Shadbolt, ‘Capturing

knowledge of user preferences: ontologies in recommender systems’,
in 1st international conference on Knowledge Capture, pp. 100–107,
New York, NY, USA, (2001). ACM Press.

[15] A. Moore, ‘Very fast EM-based mixture model clustering using mul-
tiresolution kd-trees’, inAdvances in Neural Information Processing
Systems, eds., M. Kearns and D. Cohn, pp. 543–549, 340 Pine Street,
6th Fl., San Francisco, CA 94104, (April 1999). Morgan Kaufman.

[16] D. M. Pennock, E. Horvitz, and C. L. Giles, ‘Social choice theory and
recommender systems: Analysis of the axiomatic foundations of col-
laborative filtering’, inAAAI/IAAI, pp. 729–734, (2000).

[17] A. Popescul, L Ungar, D. M. Pennock, and S. Lawrence, ‘Probabilistic
models for unified collaborative and content-based recommendation in
sparse-data environments’, in17th Conference on Uncertainty in Arti-
ficial Intelligence, pp. 437–444, Seattle, Washington, (2001).

[18] P. Resnick and H. R. Varian, ‘Recommender systems’,Communications
of the ACM, 40(3), 56–58, (1997).

[19] B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl, ‘Analysis of recom-
mendation algorithms for e-commerce’, inACM Conference on Elec-
tronic Commerce, pp. 158–167, (2000).

[20] B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl, ‘Application of
dimensionality reduction in recommender systems - a case study’, in
ACM WebKDD2000, Web Mining for E-Commerce - Challenges and
Opportunities, (2000).

[21] A. I. Schein, A Popescul, L. H. Ungar, and D. M. Pennock, ‘Meth-
ods and metrics for cold-start recommendations’, in25th International
ACM Conference on Research and Development in Information Re-
treival, (2002).

[22] J. J. Verbeek, J. R. J. Nunnink, and N. Vlassis, ‘Accelerated EM-based
clustering of large data sets’, The Netherlands, (2005). Kluwer Aca-
demic Publishers.

[23] W. Yang, Z. Wang, and M. You, ‘An improved collaborative filtering
method for recommendations’ generation.’, inIEEE International Con-
ference on Systems, Man & Cybernetics, pp. 4135–4139, (2004).

5

